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Abstract Ahybridmodel predictive control (HMPC)
strategy is proposed in this paper to autonomously reg-
ulate intelligent vehicle longitudinal velocity consider-
ing nonlinear tire dynamics. Since the tire longitudi-
nal dynamics, which has significant influence on vehi-
cle longitudinal velocity control performance, exhibits
highly nonlinear dynamical behaviors, the piecewise
affine (PWA) identification is conducted firstly based
on experimental data to accuratelymodel the tire longi-
tudinal dynamics. On this basis, due to that the intelli-
gent vehicle needs to be operated in two distinct modes
(drive and brake) for autonomous velocity regulation
and because of the affine submodel switching behav-
iors of the PWA-identified tire model, the intelligent
vehicle longitudinal dynamics control process consid-
ered in this work can be regarded as a hybrid system
with both continuous variables and discrete operating
modes. Thus, the mixed logical dynamical framework
is further used to model the intelligent vehicle longitu-
dinal dynamics, and a HMPC controller, which allows
us to optimize the switching sequences of the operation
modes (binary control inputs) and the torques acted on
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the wheels (continuous control inputs), is tuned based
on online mixed-integer quadratic programming. Sim-
ulation results finally demonstrate the effectiveness of
the proposed HMPC controller for intelligent vehicle
longitudinal velocity regulation under typical driving
conditions.
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List of symbols

ax Vehicle acceleration along the forward direc-
tion

Aw Windward area
c Number of the PWA submodels
CD Aerodynamic resistance coefficient
fR Rolling resistance coefficient
Fa Vehicle accelerating resistance
FG Vehicle climbing resistance
FR Vehicle rolling resistance
Fw Vehicle aerodynamic resistance
Fz Tire vertical load
Fxl Longitudinal forces generated by the left driv-

ing tire
Fxr Longitudinal forces generated by the right

driving tire
Fi Coefficient matrices of the polyhedral region
gi Coefficient matrices of the polyhedral region
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g Acceleration of gravity
ir Road slope angle
κ Longitudinal slip coefficient
k Number of the data points
mv Vehicle curb weight
mc Vehicle loading weight
Mrr Rolling resistance torque
ny PWA model orders
nu PWA model orders
Qy Positive penalty weighting parameters
Qu Positive penalty weighting parameters
N Control horizon
rd Effective wheel rolling radius
Ts Drive torque acted on the wheel
Tb Brake torque acted on the wheel
Tr Rolling resistance torque
u(t) MLD system inputs
vw Speed of the tire–road interface
vwl Speed of the left tire–road interface
vwr Speed of the right tire–road interface
vi Initial vehicle velocity
vv Vehicle actual velocity
y(t) PWA model output
ϑi Parameter vectors defining each submodel
ϕ(t) Regression vector of the PWA model
χi Whole polyhedral region of the affine sub-

models
Θ Moment of inertia of the wheels
ρa Air density
Ωw Wheel angular velocity

Abbreviations

MLD Mixed logical dynamical
PWA Piecewise affine
HMPC Hybrid model predictive control
ITS Intelligent transportation systems
MPC Model predictive control
MIQP Mixed-integer quadratic programming
MPT Multi-parametric programming technology

1 Introduction

With the continuous growth of car ownership, traf-
fic accidents and traffic jams have become the urgent
problems to be solved in the world [1–5]. Intelligent
transportation systems (ITS), which are the integrated

applications of artificial intelligence, information com-
munication, traffic planning and automatic control,
have emerged as an efficient way of improving traffic
capacity, reducing traffic accidents, and providingmore
choices for travelers [6–8]. As an important aspect of
ITS, intelligent vehicles are likely to play a major role
in future transportation systems, since they can pro-
vide many potential advantages, such as environment
perception, autonomous decision and motion control
[9–12]. Motivated by this, there have been a lot of
researches conducted on intelligent vehicles, among
which the longitudinal velocity control, which aims at
ensuring passenger safety and comfort, has attracted
the attention of several researchers [13,14].

To autonomously regulate the longitudinal velocity
of an intelligent vehicle, many different types of con-
trollers are designed based on the development ofmath-
ematical models to simulate the longitudinal dynamics
responses of the intelligent vehicle. In [15], a longi-
tudinal vehicle model was established based on the
assumption that no slip occurs at the tire–road inter-
face. Dias et al. [16] proposed a longitudinal model
of an autonomous car, whose structure is conceived
from the vehicle’s physics equations and parameters
are estimated using experimental data. Lydie et al. [17]
designed a shared vehicle longitudinal controller based
on the vehicle longitudinal model at low speedwith no-
slip assumption. In [18], a highly nonlinear model of
the vehicle longitudinal motion was obtained, among
which the longitudinal slip is captured through the
Kiencke’s tiremodel.Hou et al. [19] developed an accu-
rate, but simple longitudinal vehicle model by combin-
ing theoretical analysis and vehicle test data. However,
most previous researches on vehicle longitudinal con-
trol were based on simple models not accounting for
the tire–road interaction. Although some studies relied
on more compete models that account for the nonlinear
tire dynamics, the parameters of these tire models were
difficult to fit from experimental data, and some mod-
els were not simple enough to be utilizable in control
design.

Modeling the tire–road interaction involvesmultiple
aspects relevant to tire characteristics and to environ-
mental factors, which make it a quite complex issue.
Several tire models, e.g., the unified semi-empirical
model [20], the magic formula model [21] and the
Dugoff’s model [22], have been developed with quite
different properties. There is no doubt that model-
based control strategies rely heavily on precise mod-
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els to make accurate system predictions. Since the
tire–road interaction has significant influence on vehi-
cle longitudinal control performance, the tire model
must reflect the tire longitudinal dynamics accurately.
Meanwhile, as mentioned before, the most suitable tire
model should also present the best accuracy/simplicity
compromise for control design use. From this view-
point, in this study, for intelligent vehicle longitudinal
velocity controller design, the nonlinear tire longitudi-
nal dynamics is considered to be approximated by the
piecewise affine (PWA) model, which is also the first
major contribution of this study.

The PWA systems are a special class of nonlin-
ear systems established by partitioning the state-input
domain into a limited number of polyhedral regions
and obtaining the affine submodels in each region
[23–25]. Since the PWA model has universal approxi-
mation capability, arbitrarily nonlinear system, which
is sufficiently smooth, can be approximated well by a
PWA model [26]. In addition, among different frame-
works of hybrid systems, the PWA systems have been
also suitably used for hybrid controller design due
to their equivalencies to other classes of hybrid sys-
tems [27–29]. In [30], a direct torque control drive of
three-phase induction motor was modeled by the PWA
functions, and a constrained finite-time optimal con-
trol problemwas set up and solved using model predic-
tive control (MPC)method based on the derived hybrid
model. Li et al. [31] proposed to model a constrained
nonlinear quarter-car active suspension as a PWA sys-
tem, and then, a hybrid MPC suspension controller
was designed on this basis. Putz et al. [32] obtained
a PWA model for flotation plant by applying identi-
fication techniques for different operating conditions,
and a hybrid MPC methodology was developed based
on the system PWA model.

Note that to cover the whole range of opera-
tion, the affine submodels of the PWA system should
switch between different operating conditions, and for
autonomous velocity regulation, the intelligent vehi-
cle needs to be operated in two distinct modes (drive
and brake). Thus, in this paper, the intelligent vehicle
longitudinal dynamics with nonlinear tire model pre-
sented by the PWA form is regarded as a typical hybrid
dynamical system. Such a class of hybrid systems can
be further described as MLD systems, which are well
suited for the formulation of MPC problems for hybrid
systems [33,34]. The derived MLD model is used to
predict the future behaviors of the hybrid system, and

on this basis, a hybrid MPC (HMPC) approach can be
adopted to develop the intelligent vehicle longitudinal
velocity controller, which is the other major contribu-
tion of this study. It is formally proved through simula-
tions that the developed HMPC controller can optimize
the switching sequences of the operationmodes and the
torques acted on thewheels simultaneouslywith amore
accurate tire model.

The originality of this paper is that the PWA model
of the tire nonlinear dynamics is identified through the
experimental data, and a HMPC controller is tuned
to control the intelligent vehicle longitudinal velocity
based on the system MLD model. That is, the study
includes two major innovations. The first is the iden-
tification of the PWA model of the tire longitudinal
dynamics, which not only provides a novel model-
ing approach for the tire dynamics, but also presents
the best model accuracy/simplicity compromise for the
longitudinal velocity control design. The other contri-
bution is the design of the system HMPC controller,
which allows us to optimize the switching sequences
of the operation modes and the torques acted on the
wheels simultaneously during the intelligent vehicle
longitudinal velocity control process.

The paper is organized as follows. Section 2 is
devoted to identifying the tire longitudinal dynamics as
a PWA system based on experimental data. In Sect. 3,
the intelligent vehicle longitudinal dynamics with the
PWA tire model is modeled as a hybrid system based
on the MLD framework. The obtained hybrid model is
used in Sect. 4 to design a HMPC controller for intelli-
gent vehicle longitudinal velocity regulation. Simula-
tion results for all considered cases are given and ana-
lyzed inSect. 5 to illustrate the controller performances.
Section 6 concludes the paper with a summary and an
outlook.

2 PWA modeling of tire longitudinal dynamics

Tire model is used to reflect the input–output charac-
teristics of the tire under specific driving conditions,
which are shown in Fig. 1 [35]. For different research
emphases, the tire model can be further classified into
three categories, among which the tire longitudinal
dynamics has significant influence on the vehicle driv-
ing stability and braking safety. In addition, the rela-
tionships between the longitudinal force generated by
the tire and its influencing factors are entirely differ-
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Fig. 1 Input–output characteristics of the tire

Fig. 2 Experimental setup of the tire longitudinal dynamics

ent for different driving conditions, thus it is of great
significance to establish an accurate tire model. One of
the main contributions of this paper is just to establish
the tire longitudinal dynamics model through the PWA
identification method based on the driven data.

3 Tire longitudinal dynamics tests

To obtain the accurate test data about the tire longi-
tudinal dynamics, the tire tests are conducted using a
flat-plate tire test bench. The experimental setup of the
tire longitudinal dynamics is shown in Fig. 2. During
the test procedure, the tire pressure is assumed to be
constant, and the tire slip angle is assumed to be zero.
These assumptions are also the research premises of
this paper. The parameter settings of the tire tests are
given in Table 1, among which the two different longi-
tudinal adhesion coefficients are estimated according
to the materials of the rolling plates.

Table 1 List of parameter settings

Parameter Setting

Tire pressure (kPa) 880

Vertical load (N) 3124, 6530, 8036, 9468, 11760

Slip angle (rad) 0

Longitudinal slip − 1 ∼ 0.5

Adhesion coefficient 0.34 (low) 0.77 (high)

Fig. 3 Tire test results for low adhesion coefficient

Fig. 4 Tire test results for high adhesion coefficient

The tire longitudinal dynamics test results for the
two different longitudinal adhesion coefficients are
shown in Figs. 3 and 4, respectively. As it can
be observed from the tests results, the relationship
between the tire longitudinal force and its influence
factors is manifested as an irregular curved surface. If
these curved surfaces can be decomposed into several
flat surfaces for different operating regions, the nonlin-
ear tire longitudinal dynamics can then be linearized
accurately. This idea is just the research object of the
PWA identification of the tire longitudinal dynamics.
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By further comparing the tire longitudinal dynam-
ics test results for the two longitudinal adhesion coeffi-
cients, it can be found that the relationship between the
tire longitudinal force and the road longitudinal adhe-
sion coefficient is linear approximately for the same
operating region. Therefore, in this paper, the road
adhesion coefficient is not considered as an impact fac-
tor of the tire longitudinal dynamics. This simplifica-
tion is not only consistent with the actual situation, but
also reduces the complexity of the PWA identification.
In addition, several research works have been devoted
to estimate the road longitudinal adhesion coefficient
[36]; thus, this factor can be regarded as a known con-
dition for the tire longitudinal dynamics modeling.

4 PWA identification

A PWA model of the dynamical system is defined as
[37]:

y(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϑT
1

[
ϕ(t)
1

]

+ ε(t), i f ϕ(t) ∈ χ1

...

ϑT
c

[
ϕ(t)
1

]

+ ε(t), i f ϕ(t) ∈ χc

(1)

where y(t) is the PWA model output, ϑi(i = 1, . . ., c)
are the parameter vectors defining each submodel, c
is the number of the submodels, ϕ(t) represents the
regression vector. The regression vector ϕ(t) studied
in this paper, which consists of the system past inputs
and outputs, is formed as:

ϕ(t) = [y(t − 1), . . . , y(t − ny),

u(t − 1), . . . , u(t − nu)]T (2)

where ny and nu are the PWA model orders, u(t) is
the input to the system. χi (i = 1, . . ., c) represents the
whole polyhedral region of the affine submodels, and
each region χi is a convex polyhedron represented in
the following form:

χi = {Fiϕ(t) + gi ≤ 0} (3)

where Fi and gi are the corresponding coefficientmatri-
ces. By letting Mi = [Figi], (i = 1, . . ., c), the convex
polyhedron region χi can be rewritten as:

χi =
{
Mi [ϕ(t) 1]T ≤ 0

}
(4)

The PWAsystem defined by the above equations can be
regarded as a collection of affine subsystems connected

Fig. 5 All five affine submodels of the system derived coarsely
from steady-state response

by dynamical switches which depend on the partition
of the polyhedral region. The PWA identification prob-
lem solved in this paper is just to obtain a PWA model
for the tire longitudinal dynamics based on the experi-
mental data. It mainly includes the following two steps:

4.1 Segmentation

At the first step, the number of the affine submodels
and the coefficient matrices of hyperplanes are deter-
mined. To find a good balance between the number
of the submodels and the overall fitting accuracy, sev-
eral approaches for region partitioning have been pro-
posed [38]. Considering the PWA identification prob-
lem researched in this study, heuristic approach is used
according to the system steady-state response surfaces.
By further observing the surface shape shown in the fig-
ure, it can be concluded that five affine submodels can
reasonably approximate these curved surfaces, which
determines the number of the affine submodels as five.
Figure 5 shows all five affine submodels of the system
derived coarsely from steady-state responses. In this
paper, to distinguish between these affine submodels
and derive the space line equations for the nonlinear
relationship shown in Fig. 3, the following operating
points are listed as:

⎧
⎪⎪⎨

⎪⎪⎩

A(−0.19, 11800,−3450);
B(−0.04, 11800,−2505);
C(0.03, 11800, 2815);
D(0.07, 11800, 3400);

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(0.036, 3124, 799.6);
F(−0.02, 3124,−425.2);
G(−0.03, 3468,−607.6);
L(−0.03, 3124,−529.2);
I (−0.07, 3124,−805.6);

Projecting these nine data points on the xy plane results
in Hi coefficients, which are described as the following
five linear equations:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fz = −69636κ − 1751.7;
Fz = −867600κ − 22904;
Fz = −34797κ + 2410.5;
Fz = 137960κ + 7662.2;
Fz = 260520κ − 6441.4;

(5)

where Fz is the tire vertical load, κ is the longitudinal
slip coefficient. These five linear equations define the
partition of the operating region.

4.2 Regression

After repeated analyses and comparisons, the order of
the affine submodels is finally determined as: ny = 2
and nu = 1. Once the operating region is partitioned
and the order of the submodels is determined, the
parameter vectors of the affine submodels can then
be estimated by using the least-square algorithm. On
the basis of the aforementioned segmentation, the data
points have been classified into several clusters; thus,
the regression aim is to estimate an affine model for
each cluster. If N data points are provided for a fixed
number of the affine submodels, the considered regres-
sion problem can be formulated as follows [39]:

λki =
{
1 if ϕ(k) ∈ χi

0 otherwise
k = 1, . . . , N , i = 1, . . . , c

min
ϑi

1
N

∑N
k=1

∑c
i=1

(

yk − ϑT
i

[
ϕ(t)
1

])2

λki

(6)

Solving the problem shown in Eq. (6) forϑi cwill result
in five affine submodels with parameters as follows:

⎧
⎨

⎩

Fx (k) = −0.156Fx (k − 1) + 0.183Fx (k − 2)
+461.72κ(k − 1) − 0.312Fz(k − 1) + 202.44

i f Fz ≤ −69636κ − 1751.7
⎧
⎪⎪⎨

⎪⎪⎩

Fx (k) = −0.284Fx (k − 1) + 0.267Fx (k − 2)
+6910κ(k − 1) − 0.22Fz(k − 1) + 364.65

i f Fz > −69636κ − 1751.7&
(Fz ≤ −867600κ − 22904|Fz ≤ −34797κ + 2410.5)

⎧
⎨

⎩

Fx (k) = 1.304Fx (k − 1) − 1.218Fx (k − 2)
+71757.1κ(k−1)−0.145Fz(k−1)+2076.57

i f Fz > -867600κ − 22904&Fz ≥ 137960κ + 7662.2
⎧
⎪⎪⎨

⎪⎪⎩

Fx (k) = −0.424Fx (k − 1) + 0.367Fx (k − 2)
+22050κ(k − 1) + 0.215Fz(k − 1) − 684.12

i f Fz < 137960κ + 7662.2&Fz > -34797κ + 2410.5
&Fz ≥ 260520κ − 6441.4

⎧
⎨

⎩

Fx (k) = −0.168Fx (k − 1) + 0.157Fx (k − 2)
+505κ(k − 1) + 0.298Fz(k − 1) − 151.42

i f Fz < 260520κ − 6441.4

Fig. 6 Fitting error between the PWA model output and the
experimental data for low adhesion coefficient

4.3 Accuracy validation

To validate the accuracy of the identified PWA model,
its simulation results are compared with the experi-
mental data. The fitting error, i.e., the tire longitudi-
nal force difference between the PWA model output
and the experimental data for low adhesion coefficient,
is shown in Fig. 6. It can be concluded that the error
distribution is concentrated near zero, and its ampli-
tude range is relatively small compared with that of the
actual tire longitudinal force, which indicates that the
PWAmodel can effectively approximate the dynamical
behaviors of the tire longitudinal dynamics.

Since the tire longitudinal dynamics with differ-
ent road adhesion coefficients are assumed to be lin-
early dependent in this study, thus on the basis of the
identified PWAmodel for low adhesion coefficient, the
fitting error between the PWA model and the experi-
mental data for high adhesion coefficient can be fur-
ther obtained as Fig. 7. As it can be demonstrated from
the figure, similar conclusion can be obtained as the
previous scenario, i.e., the output of the PWA model
matches the experimental results accurately, which fur-
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Fig. 7 Fitting error between the PWA model output and the
experimental data for high adhesion coefficient

ther validates the effectiveness of the PWA identifica-
tion method.

5 System hybrid modeling

Hybrid dynamic model is used to describe a class
of systems which involve both continuous and dis-
crete dynamics. Since the intelligent vehicle longitu-
dinal dynamics with the PWA tire model has typical
hybrid characteristics, the system hybrid modeling is
conducted in this section for the following HMPC con-
troller design.

6 Vehicle longitudinal dynamics

As shown in many previous works, the vehicle longi-
tudinal dynamics model can be established based on
Newtonian mechanics. Thus, the total vehicle driving
resistance which also represents the vehicle driving
force demands (FDem) can be obtained as follows [40–
43]:

FDem = Fa + FG + FR + Fw (7)

where Fa represents the vehicle accelerating resistance,
FG represents the vehicle climbing resistance, FR rep-
resents the rolling resistance, Fw represents the aerody-
namic resistance. All these resistances can be approx-
imatively given by [44]:
⎧
⎪⎪⎨

⎪⎪⎩

Fa = (mv + mc + Θ/r2d )ax
FG = (mv + mc)gir
FR = fR(mv + mc)g
Fw = CDAw

ρa
2 v2v

(8)

where mv and mc are the vehicle curb weight and the
vehicle loading weight, respectively, Θ is the moment
of inertia of the wheels, rd is the effective wheel rolling
radius, ax is the vehicle acceleration along the for-
ward direction, g is the acceleration of gravity, ir is the
road slope angle which uses radian as unit, fR is the
rolling resistance coefficient, CD is the aerodynamic
resistance coefficient, Aw is the windward area, vv is
the vehicle velocity, ρa is the air density.

Except for the aerodynamic resistance, all external
efforts acting on the vehicle are generated at the wheel–
road contact. Therefore, the accurate modeling of the
tire longitudinal dynamics is essential for controlling
the intelligent vehicle. For those tiremodels established
on the assumption that no slip occurs at the tire–road
interface, the longitudinal force generated by the tire
(Fx) is described by:

Fx = Ts − Tb − Mrr

rd
(9)

where Ts represents the drive torque acted on thewheel,
Tb represents the brake torque acted on the wheel, Mrr

denotes the rolling resistance torque. The tire longitu-
dinal dynamics model shown in Eq. (9) may be suffi-
cient for the longitudinal control design when driving
on the dry asphalt road, but for the icy and slippery
roads, the tire longitudinal dynamics will have behav-
ioral changes and variations due to slip occurrence.
Therefore, the tire longitudinal force described by Eq.
(9) is no longer accurate sufficiently for these driving
conditions. To solve this problem, the tire longitudi-
nal dynamics is identified through the PWA approach
in this paper. Based on the identification results, a
schematic representation of the PWA tire model is
shown in Fig. 8.

Invoking the dynamic fundamental principle, the
wheel dynamics can be described by the following
equation:
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Fig. 8 Schematic representation of the PWA tire model

Θ
dΩw

dt
= Ts − Tb − Fxrd − Tr (10)

whereΩw denotes thewheel angular velocity,Tr denotes
the rolling resistance torque. Based on the relation
vw = rdΩw, the following equation can be obtained as:

v̇w = Ts − Tb − Fxrd − Tr
Θ

rd (11)

where vw represents the speed of the tire–road inter-
face. On this basis, the tire longitudinal slip is defined
as follows:
{

κ = 1 − vv
vw

= 1 − vv
rdΩw

in acceleration mode
κ = vv

vw
− 1 = vv

rdΩw
− 1 in deceleration mode

(12)

According to Eqs. (7) and (8), the vehicle velocity
vv, i.e., the linear velocity of the wheel center, can be
obtained as:

v̇v = Fx − FG − FR − Fw
mv + mc + Θ/r2d

(13)

The above equations together with the identified PWA
tire model describe the vehicle longitudinal dynamics.
Tomake clear the research object in this paper, the intel-
ligent vehicle longitudinal dynamics model is devel-
oped based on a front-wheel-drive vehicle. Thus, the
global diagram of the vehicle longitudinal dynamics is
further illustrated by Fig. 9.

In the figure, Fxl and Fxr represent the longitudi-
nal forces generated by the left driving tire and the
right driving tire, respectively, vwl and vwr represent
the speeds of the left tire–road interface and the right
tire–road interface, viis the initial vehicle velocity.

2

1

v c dm m Θ r+ +

ax

∫

Fz Fz

κ κ

Fxl Fxr

Longitudinal mechanics of 
the vehicle body

Mechanics 
of the 
wheel

Mechanics 
of the 
wheel

vwl

FG FR Fw

Fa

vi

vv Tire slip 
calculation

vv

 PWA tire 
model

vwr

Ts Ts

Tire slip 
calculation

 PWA tire 
model

Tb Tb

Tr Tr

Fig. 9 Global diagram of the vehicle longitudinal dynamics

7 Dynamic hybrid model

To cover the whole operation range of the intelligent
vehicle longitudinal dynamics which involves both
discrete and continuous variables, the system hybrid
model is considered to be established in this section.
Considering the following formulation of the system
hybrid MPC strategy and the equivalent between the
PWA model and the MLD model, the intelligent vehi-
cle longitudinal dynamics with the PWA-identified tire
model is formulated by the MLD systems, which can
be generalized by [45,46]:
⎧
⎨

⎩

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t),
y(t) = Cx(t)+D1u(t)+D2δ(t)+D3z(t),
E2δ(t)+E3z(t) ≤ E1u(t)+E4x(t)+E5,

(14)

where x ∈ �nr × {0, 1}nb , u ∈ �mr × {0, 1}mb ,
y ∈ �pr × {0, 1}pb denote the system state, input
and output vectors, respectively. It is noted that these
vectors can include both continuous and discrete vari-
ables. In addition, δ ∈ {0, 1}rb and z ∈ �rr denote
the auxiliary binary and continuous variables, respec-
tively, which are defined for the convenience of the sys-
tem hybrid modeling. The evolution of the system state
variables is describedby the statematrix A and the input
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Table 2 HYSDEL list of hybrid systems

matrices B1, B2 and B3. Similarly, the output matrix C
and the matrices D1, D2 and D3 describe the evolu-
tion of the system output. The matrices E1 to E5 define
the system inequalities, which are incorporated when
logic rules are transformed into mixed-integer inequal-
ities. The MLD models have successfully proved to
be able to recast hybrid system control problem into
mixed-integer linear or quadratic programming prob-
lem solvable via efficient solvers [47]. This feature has
led to this model to be widely used in the formulation
of the hybrid system MPC strategies.

Since the traditional modeling procedures for the
MLD systems are inefficient and tedious, a novel
language called HYSDEL available for MATLAB is
developed by researchers [48]. The HYSDEL fully
automates the process of generating the matrices asso-
ciated with a MLD model defined by Eq. (14). Table 2
shows the HYSDEL structure used to establish a MLD
model suitable to be used in the HMPC strategy.

Based on the aforementioned HYSDEL structure,
how the intelligent vehicle longitudinal dynamics with
the PWA tire model can be formulated as a MLD sys-
tem is introduced in the following sections. The vehicle
longitudinal dynamics is characterized firstly by two
state variables, i.e., the vehicle (chassis) speed vv and
the speed of the tire–road interface vw. To achieve the
autonomous velocity regulation, the system input vari-
ables are defined as:

u = [δs δb Ts Tb]T (15)

where δs and δb are binary control variables which have
the following correspondence with the system opera-
tion modes:
{ [δs = 1] ↔ drive mode is work

[δb = 1] ↔ brake mode is work
(16)

Since the MLD model only allows specifying the evo-
lution of continuous variables through linear dynamic
equations, the square of velocity in the expression of the
air resistance needs to be piecewise linearized. Accord-
ing to the vehicle velocity range, the piecewise-linear
approximation of the square of velocity is given by the
following equations:

v2v =

⎧
⎪⎪⎨

⎪⎪⎩

10vv [0 ≤ vv < 10];
30vv − 200 [10 ≤ vv < 20];
50vv − 600 [20 ≤ vv < 30];
70vv − 1200 [30 ≤ vv ≤ 40].

(17)

Based on the above approximation process, the fol-
lowing auxiliary variables are further defined as:

[δsv1 = 1] ↔ 0 ≤ vv < 10, [δsv2 = 1] ↔ 10 ≤ vv < 20,
[δsv3 = 1] ↔ 20 ≤ vv < 30, [δsv4 = 1] ↔ 30 ≤ vv < 40,

(18)

where δsv1 to δsv4 are the defined auxiliary variables.
On this basis, four continuous auxiliary variables csv1
to csv4 can be further defined as:
⎧
⎪⎪⎨

⎪⎪⎩

csv1 = {IF δsv1 THEN 10vv ELSE 0},
csv2 = {IF δsv2 THEN 30vv − 200 ELSE 0},
csv3 = {IF δsv3 THEN 50vv − 200 ELSE 0},
csv4 = {IF δsv4 THEN 70vv − 1200 ELSE 0},

(19)

Therefore, the vehicle aerodynamic resistance in Eq.
(9) can be rewritten by:

Fw = CDA
ρa

2
csv (20)

where csv = csv1 + csv2 + csv3 + csv4.
To calculate the tire longitudinal force according to

the PWA-identified model, the following five binary
auxiliary variables δtl1 to δtl5 are firstly defined as:

[δtll = 1] ↔ Fz ≤ −69636κ − 1751.7,

[δtl2 = 1] ↔ (Fz > −69636κ − 1751.7)

∧((Fz ≤ −867600κ − 22904)

∨(Fz ≤ −34797κ + 2410.5))

[δtl3 = 1] ↔ Fz > −867600κ − 22904

∧Fz ≥ 137960κ + 7662.2
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[δtl4 = 1] ↔ Fz < 137960κ + 7662.2

∧Fz > −34797κ + 2410.5

∧Fz ≥ 260520κ − 6441.4

[δtl5 = 1] ↔ Fz < 260520κ − 6441.4 (21)

Then, the following five continuous auxiliary variables
ctl1 to ctl5 can be defined accordingly as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ctl1 = {IF δtl1 THEN − 0.156Fx (k − 1) + 0.183Fx (k − 2)
+ 461.72κ(k−1)−0.312Fz(k−1) + 202.44 ELSE 0},

ctl2 = {IF δtl2 THEN − 0.284Fx (k − 1) + 0.267Fx (k − 2)
+ 6910κ(k − 1) − 0.22Fz(k − 1) + 364.65 ELSE 0},

ctl3 = {IF δtl3 THEN 1.304Fx (k − 1) − 1.218Fx (k − 2)
+ 71757.1κ(k−1)−0.145Fz(k−1)+2076.57 ELSE 0},

ctl4 = {IF δtl4 THEN − 0.424Fx (k − 1) + 0.367Fx (k − 2)
+ 22050κ(k − 1) + 0.215Fz(k − 1) − 684.12 ELSE 0},

ctl5 = {IF δtl5 THEN − 0.168Fx (k − 1) + 0.157Fx (k − 2)
+ 505κ(k − 1) + 0.298Fz(k − 1) − 151.42 ELSE 0},

(22)

On this basis, the longitudinal force generated by the
tire can be rewritten by:

Fx = ctl1 + ctl2 + ctl3 + ctl4 + ctl5 (23)

Since the MLDmodel is established based on discrete-
time, the derivatives of the state variables are given by:
{

v̇v = (vv(t + 1) − vv(t))/Tk
v̇w = (vw(t + 1) − vw(t))/Tk

(24)

where Tk is the sample time. Thus, according to the
above equations, the update equations for the system
state variables can be obtained as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vv(t + 1) = vv(t) + Tk(Fxl+Fxr)
M − Tk(mv+mc)gir

M
− Tk fR(mv+mc)g

M − TkCDAρacsv
2M

vw(t + 1) = vw(t) + Tk(Ts−Tb)rd
Θ

− Tk(Fxl+Fxr)r2d
Θ

− TkTrrd
Θ

(25)

where M = mv + mc + Θ/r2d . Since the definition
of the tire longitudinal slip coefficient depends on the
current drivingmode (acceleration or deceleration), the
tire slip coefficient can be further defined as:

κ =
(

1 − vv

vw

)

δs +
(

vv

vw
− 1

)

δb (26)

After defining the above system variables and deter-
mining their relationships and update equations, the
MLD model of the intelligent vehicle longitudinal
dynamics with the PWA-identified tire model can then
be obtained directly by using the HYSDEL, which

can generate the system MLD model as an encap-
sulation module called “HYSDEL model” in MAT-
LAB/Simulink. The resultingMLDmodel mainly con-
sists of four inputs and one output. The dimensions
of all matrices shown in Eq. (14) are A(2×2), B1(2×4),
B2(2×14),B3(2×16),C(1×2),D1(1×4),D2(1×14),D3(1×16),
E1(18×14),E2(18×16),E3(18×4),E4(18×2),E5(18×1). All
system constraints are summarized in the 78 mixed-
integer inequalities, which are omitted here for lack of
space.

8 Hybrid controller design

The intelligent vehicle longitudinal velocity regulation
system presented in this study can operate in two differ-
ent modes. Meanwhile, the PWA-identified tire model
needs to switch between different affine submodels
to cover the whole range of operation. The switching
between these operating modes and submodels would
indicate a system model with a time-varying structure.
Furthermore, the relationship between the longitudi-
nal velocity and the input torques is intrinsically non-
linear. Therefore, the methodology which can tackle
the switching and nonlinearity issues is worthy to be
researched.

In this section, how the HMPC can deal with both
discrete and continuous dynamics of the intelligent
vehicle velocity regulation system is introduced. The
HMPC uses the MLD model to predict the future evo-
lution of the system within a fixed prediction horizon;
thus, a finite horizon optimal control problem at each
sampling instant can then be solved. On this basis, a
sequence of the future control inputs is determined
through theoptimizationprocedure,which aims tomin-
imize a given objective function and enforces fulfill-
ment of the constraints. Then, by only applying the
first control input in this sequence and by recomput-
ing the control sequence at the next sampling time, a
receding horizon policy is achieved, which provides a
feedback mechanism for reference tracking.

The HMPC control aim in this study is to minimize
the error between a reference and the actual vehicle lon-
gitudinal velocity, and to avoid the frequent variations
in manipulated variables. By describing the optimal
control of the intelligent vehicle longitudinal dynam-
ics as a HMPC control problem, the output of the con-
troller at each sampling instant is the solution to the
following optimization problem:

123



www.manaraa.com

Hybrid modeling and predictive control of intelligent vehicle 1061

minimize
N−1∑

h=0

‖y(h|t) − yref‖2Qy

+
N−1∑

h=0

‖�u(h|t)‖2Qu
(27a)

subj.to. x(0|t) = x(t)

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t)

y(t) = Cx(t)+D1u(t)+D2δ(t)+D3z(t)

E2δ(t)+E3z(t) ≤ E1u(t)+E4x(t)+E5

umin ≤ u(h|t) ≤ umax

xmin ≤ �x(h|t) ≤ xmax (27b)

where Qy and Qu are the suitable positive penalty
weightingparameters, N is the control horizon,�u(h|t)
and �x(h|t) are defined as:
⎧
⎨

⎩

�u(h|t) = [δd(h|t)
−δd(h|t − 1) δb(h|t) − δb(h|t − 1)]T

�x(h|t) = [v(h|t) − v(h|t − 1)]
(28)

Just as mentioned before, to achieve the control
objectives, each term in this optimization statement has
clear physical meaning in terms of the functionality
of the HMPC control system for the intelligent vehi-
cle longitudinal dynamics. The first term in the objec-
tive function represents the intelligent vehicle velocity
tracking objective. Thus, error between the actual vehi-
cle velocity and the desired value is penalized through
a weighted norm, which ensures that the output of the
optimal controller can help track the vehicle’s desired
velocity.�u(h|t) corresponds to the changes in the first
two inputs between the two adjacent sampling instants,
which is used to avoid the frequent switching of the
operation modes.

By setting the following vectors:
⎧
⎪⎨

⎪⎩


 = [
uT (0|t) · · · uT (N − 1|t) ]T

� = [
δT (0|t) · · · δT (N − 1|t) ]T

� = [
zT (0|t) · · · zT (N − 1|t) ]T

(29)

and the general vector:

� =
[

T �T �T

]T
(30)

the HMPC control problem of the intelligent vehicle
longitudinal dynamics with the PWA tire model can
then be formulated as a mixed-integer quadratic pro-
gramming (MIQP) problem, which is solved as follows
[49–51]:

Fig. 10 Generation from parent node to sub-node

min{�}
1
2�

T S1� + S2�

Subj.to. S3� ≤ S4
(31)

where S1, S2, S3 and S4 are matrices with suit-
able dimensions. Considering the characteristics of the
research problem in this study, the Branch and Bound
method is used to solve the MIQP problem. The main
idea of the Branch and Bound method for solving the
MIQP problem is to lift partial or whole integer restric-
tions in the decisionvariables; thus, a series of quadratic
programming (QP) problems which follow the original
MIQP problem are formed. Since the solution of the
QP problem is relatively simple, the suboptimal solu-
tion or global optimal solution of the MIQP problem
which meets the integer constraints can be obtained by
solving a series of QP problems.

The solution principle of the MIQP problem based
on the Branch and Bound method can be further
described by the binary search trees. Firstly, a vec-
tor α ∈ {0, 1, ∗}nd , whose dimension is identical with
the decision variables γ d which contains integer con-
straints, is defined. The vector ϕ not only corresponds
to the nodes in the binary search trees, but also to the
QP problems. For theMIQP problem, when the integer
constraints in the decision variables γd are canceled, a
new vector α0 ∈ {∗, ∗, . . . , ∗}nd can then be defined,
in which the value is * means that this element can be
defined as any real number between 0 and 1. Thus, the
generation of the new QP problems can be achieved by
selecting an element in ϕ0 which is defined as 0 and 1.
For example, when the third element in α0 is selected,
the generation from parent node to two sub-nodes is
shown in Fig. 10.

The resulting QP problems which correspond to the
two new sub-nodes can be redefined as:

min
γ

(γ ′Hγ + F ′γ ) (32a)
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subj.to.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aineqγ ≤ bineq
Aeqγ = beq

γ ∈
[

γc
γd

]

γc ∈ �nc

γd (1) ∈ �
γd (2) ∈ �
γd (3) = 0
γd (#) ∈ �nd−3

→ α1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aineqγ ≤ bineq
Aeqγ = beq

γ ∈
[

γc
γd

]

γc ∈ �nc

γd (1) ∈ �
γd (2) ∈ �
γd (3) = 1
γd (#) ∈ �nd−3

→ α2

(32b)

where H is the coefficient matrix with suitable
dimensions,γ is the decision variables in the optimal
control process for the MLD system, γc is the contin-
uous decision variables, Aineq, bineq, Aeq and beq are
the coefficient matrices and vectors in the constrained
inequalities and equalities. By solving the above two
QP problems, the optimal decision variables are fur-
ther sought [52,53]. If it is not successful, the other
element in ϕ0 will be set as 0 and 1; thus, the afore-
mentioned solving process is repeated until the global
optimal solution of the MIQP problem is generated.

9 Simulation results and analyses

In order to verify the performance of the proposed
HMPC controller, which has been implemented using
the Hybrid Toolbox [54], two simulation examples and
the results are presented in this section. Note that since
one of themajor contributions of this study is to approx-
imate the nonlinear tire longitudinal dynamics through
the PWA approach, a more accurate system model,
which also presents the best accuracy/simplicity com-
promise for control design use, is established in this
paper. Therefore, to test the performance of the con-
troller, we just intend to validate the longitudinal veloc-
ity tracking accuracy with slip occurrence. In addition,
sincemost previous researches on vehicle velocity con-
trol are based on simple models not accounting for the
tire–road interaction, the comparison between the per-
formance of the proposed HMPC controller and the
previous controllers cannot be achieved in this paper.
The main simulation parameters are shown in Table 3.

To achieve the optimal control performance of the
HMPC controller, the system control parameters need
to be tuned first, which include the weighting parame-
ters Qy ,Qu1and Qu2, and the control horizon N . Note
that although the increment of the control horizon can
improve the controller performance, the computation
complexity will be increased dramatically, which is

Table 3 Simulation parameters of the intelligent vehicle

Parameter Nominal value

mv (kg) 2115

mc (kg) 140

Θ (kgm2) 5.65

rd(m) 0.355

CD 0.365

A(m2) 3.26

ρa (kgm−3) 1.29

fR 0.018

not conducive to the system’s real-time control. Thus,
the tuning objective of the control horizon is to make
the N as small as possible, but, at the same time, the
control performance should also be guaranteed. The
optimization of other parameters is conducted through
repeated simulation comparisons, and the parameters
are determined finally for the optimal control perfor-
mance. After the aforementioned tuning process, a sat-
isfactory control performance is achieved with N = 3,
Qy = 24, Qu1 = Qu2 = 8.5.

10 Simulation analysis of the first case

The first simulation condition is designed as a longi-
tudinal velocity tracking with two different adhesion
coefficients on a flat surface. The simulation results
are shown in Figs. 11, 12, where As denotes the road
adhesion coefficient. One can note that the designed
controller follows the reference with minor errors in
general for the two different road adhesion coefficients,
except for the initial stages of the tracking procedure,
in which the rising processes of the driving torque and
the brake torque need some time.

It is also observed fromFig. 11 that during the veloc-
ity tracking procedure, the designed controller can cal-
culate both the drive torque and the brake torque acted
on the wheels that were needed, respectively, for the
two different road adhesion coefficients. As shown in
Fig. 12, for different road adhesion coefficients, to track
the desired velocity, the drive torque and the brake
torque acted on the wheels are also different, which
is because the values of the tire longitudinal slip coeffi-
cients are controlled to be different during the velocity
tracking procedure for different adhesion coefficients.
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Fig. 11 Simulation results of the velocity tracking performance
of the first case. a Desired velocity. b Velocity tracking error
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Fig. 12 The drive torque and the brake torque acted on the
wheels for the first case

11 Simulation analysis of the second case

The second simulation test is performedwhen the refer-
ence velocity is set as a sinusoidal curve and the vehicle
is assumed to be driven on a flat surface with two dif-
ferent adhesion coefficients. The simulation results are
shown in Figs. 13, 14. As shown in Fig. 13, the con-
troller is also able to react effectively to the sinusoidal
variations of the vehicle longitudinal velocity. For
both vehicle acceleration and deceleration, the veloc-
ity responses converge to the reference and present lit-
tle tracking error for the two different adhesion coeffi-
cients. Figure 14 shows the drive torque and the brake
torque acted on the wheels calculated by the designed
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Fig. 13 Simulation results of the velocity tracking performance
of the second case. a Desired velocity. b Velocity tracking error
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Fig. 14 The drive torque and the brake torque acted on the
wheels for the second case

intelligent vehicle HMPC controller. It can be observed
that the controller can effectively achieve different con-
trol actions for different road adhesion coefficients.

12 Simulation analysis of the third case

The third simulation test is performed when the refer-
ence velocity is set as the US06 cycle, which is a typ-
ical driving condition including high speed and high
acceleration, with a fixed adhesion coefficient on a flat
surface. The simulation results are shown in Figs. 15,
17. As shown in Fig. 15, the controller is able to react
effectively to the variations of the vehicle longitudi-
nal velocity. For both vehicle acceleration and decel-
eration, the velocity response converges to the refer-
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Fig. 15 Simulation results of the velocity tracking performance
of the first case. a Desired velocity. b Velocity tracking error
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Fig. 16 Simulation results of the torques acted on the wheels

ence and presents little tracking error compared with
the range of the desired values. The simulation results
of the control signals during theUS06 velocity tracking
procedure are also shown in Figs. 16 and 17. It can be
observed that the designed intelligent vehicle HMPC
controller can calculate both the continuous torques
acted on the wheels and the binary control outputs, i.e.,
the real-time statuses of δd and δb, which reflect the
system operation modes, accurately. The mutual cor-
respondence between the continuous and binary con-
trol variables is also verified by the simulation results,
which demonstrates the correctness of the control logic.
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Fig. 17 Simulation results of the binary control signals

13 Conclusions

In this paper, to achieve the best model accuracy/
simplicity compromise for the intelligent vehicle longi-
tudinal velocity control design use, a novel PWA iden-
tification approach is proposed first to approximate the
tire longitudinal dynamics. The system PWA identi-
fication problem is determined as constructing several
affine submodels to approximate the nonlinear relation-
ship between the tire longitudinal force and its influence
factors. Comparisons between the PWA model output
and the experimental data demonstrate the effective-
ness of the proposed identification approach for the
modeling of the tire longitudinal dynamics.

On this basis, considering the hybrid characteris-
tics of the intelligent vehicle longitudinal dynamics
with the PWA tire model, the system hybrid model
is established based on the MLD framework, and the
system HMPC control problem is then formulated as
a MIQP problem, which is solved by the Branch and
Bound method in this study. Two different simulation
conditions are designed to verify the performance of
the proposed HMPC controller, the simulation results
show that the controller is able to react effectively to
the variations of the vehicle velocity, and the velocity
responses converge to the references well. The HMPC
controller can not only provide the accurate torques
acted on the wheels, which are the continuous control
outputs, but also calculate the binary mode switching
sequences.

123



www.manaraa.com

Hybrid modeling and predictive control of intelligent vehicle 1065

In the future work of this paper, experimental vali-
dation of the effectiveness of the designed HMPC con-
troller should be carried out. Note that since the HMPC
optimal control problem needs to be solved over a
finite horizon at each sampling time, which requires
large computing power during implementation, the
explicit form of theHMPC law can be computed offline
by using multi-parametric programming technology
(MPT) according to some of the latest studies.
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